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Abstract: Concrete is a porous material. When satu-
rated with water and then cooled to below 0°C, it cracks
internally. Upon repeated freezing and thawing, the
cracks grow, interact, and lead eventually to macro-

scopic degradation, termed ice damage. This report re-
views the phenomenon and considers the underlying
mechanisms. New explanations are given for the delete-
rious effect of deicer salts and for the beneficial effect of
entrained air.
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Ice Damage to Concrete
ERLAND M. SCHULSON

INTRODUCTION

Although perhaps the oldest engineered mate-
rial and certainly one of the most used and stud-
ied, concrete continues to challenge the imagina-
tion. At stake is service life. Owing to its porous
microstructure, the material is vulnerable to envi-
ronmental degradation. Corrosion of steel rein-
forcement bars, alkali-silica reactions, sulfate at-
tack, and thermal cycling below the bulk freezing
point of water all lead to expansive products that
damage the interior and shorten life. The cost is
huge. For instance, the Federal Highway Admin-
istration estimates (FHWA 1995) that the annual
cost to maintain the nation’s highways and
bridges, many of which are made from concrete,
is $54.8 billion. The estimate to improve the sys-
tem over 20 years is $1.5 trillion. The positive view
is that small improvements in materials perfor-
mance will lead to major savings.

The challenge, then, is to the materials scientist
and might be stated as follows: design an easily
castable/formable cementitious material whose
price, properties, and availability are essentially
the same as today’s concrete and whose durabil-
ity is significantly greater, with no adverse effects
on the environment. This is tantamount to design-
ing a material in which the degradation processes
are eliminated, or at least suppressed. The issue
thus reduces to the elucidation and control of the
mechanisms underlying the various processes.

It is here that the limitations in understanding
are met. Concrete, as discussed below, is an ex-
traordinarily complex material. It is very difficult
to vary one microstructural element independent
of the others. As a result, structure—property rela-
tionships remain elusive.

This report reviews the problem of ice damage
to concrete, or more explicitly the internal crack-
ing that accompanies the freezing of water within
its pores, often in the presence of deicing salts. (The
term “ice damage” is introduced to include both
frost damage and scaling in the presence of to de-
icer salts.) The report first addresses the structure
of the material, and describes (in three appendi-
ces by |. Baker) the techniques that have been used

to reveal the microstructure. It then considers the
factors that affect ice damage. Finally, it considers
the underlying mechanismes.

THE STRUCTURE OF CONCRETE

Concrete, when fully hardened, contains a va-
riety of microstructural features on a variety of
scales. To the unaided eye, it appears from a pol-
ished section to be essentially a two-phase com-
posite—a matrix of hardened mortar plus coarse
(> 5-mm) aggregate that occupies about 75% of its
volume. Dissolved air may also be detected, as
coarse spherical pores distributed throughout the
matrix. On a somewhat finer scale, the mortar it-
self appears as a two-phase composite of hard-
ened/hydrated cement paste plus fine aggregate
or sand. At a finer scale still, the hydrated cement
paste is seen to be a multiphase composite, con-
sisting typically of about 10-15% (by vol.) clinker
or unhydrated cement globules (mainly a mixture
of impure C3S*, termed alite, plus impure C,S,
termed belite), about 20% of plate-like CH, and
about 30% porosity, all dispersed within a matrix
of C-S-H. The pores are the remnants of the sites
which held the water required for hydration. They
are finer than air bubbles, have irregular shapes,
and are interconnected. At a still finer scale, even
tinier pores are detected within the C-S-H and
constitute about 28% of its volume (Powers and
Brownyard 1947). The C-S-H matrix and the po-
rosity are the most important elements relevant
to ice damage.

C-S-H

Although still under active investigation (e.g.,
Taylor 1986, 1992, Allan et al. 1987, Pope et al. 1992,
Bergstrom 1992, Christensen et al. 1994, Jennings
and Tennis 1994, Tarrida et al. 1995, Meredith et
al. 1995, Hall et al. 1995, Gu and Beaudoin 1996,
Viehland et al. 1996) certain characteristics of C-S-

*We adopt the cement chemist’s nomenclature. Accord-

ingly, C = Ca0, S =SiO, H = H,0, A= Al,Oz; and F =
2 2 23

Fe,Os.



H have been established. Unlike the other solid
constituents of the microstructure, the material is
only partially crystalline. It is a disordered, lay-
ered substance (Taylor 1986, 1992) comprising
structurally imperfect derivatives of jennite
(CqSgH11) and 1.4-nm tobermorite (CsSgHg). The
crystalline content is on the nanometer scale (about
5 nm) and is dispersed within an amorphous ma-
trix within which some short-range ordered re-
gions are also dispersed (Viehland et al. 1996) The
water is bound between the layers. C-S-H is often
considered to be gel-like (i.e., nearly amorphous)
and so its pores are termed gel pores. Its Ca/Si ra-
tio varies from 1.7 to 2.0 (Taylor 1986), although
this appears to vary on the submicron scale
(Viehland et al. 1996) and to be closer to about 1.8
in fully hydrated cement.

C-S-H consists of inner and outer products, at
least when made from C3S and water alone
(Groves 1985). The inner material is the product
of hydration, which forms within the original
boundaries of the parent C3S particle. The outer
product forms more or less beyond the original
boundaries (although some also forms within the
original boundaries) and consists of CH flakes,
larger capillary pores, and lath-like C-S-H. Some-
times within the outer product acicular C-S-H is
seen, which could actually be rolled up foils. Both
inner and outer products are porous, although the
inner product is thought to be less so*. Barring the
spatial variation in Ca/Si ratio, both products ap-
pear to have about the same average Ca/Si ratio,
i.e.,, 1.7 in Groves’ (1985) material. Interestingly,
rupture appears to occur just inside the inner/
outer interface, not at the C-S-H/CH boundary;,
suggesting that the negative view of the plate-like
phase in relation to strength and fracture may not
be justified (Groves 1985). As far as ice damage is
concerned, one wonders whether the outer prod-
uct is the more important.

At the molecular level C-S-H consists of
polysilicate anions. The basic unit or monomer is
the SiO,~ tetrahedon: Si occupies the center and
bonds with four oxygen atoms. The polymer is
formed by the tetrahedra linking together, as in
silicate minerals. The Ca**ions are incorporated
in a manner that preserves electrical neutrality.
This implies that in Si,O; dimers and in SizO4q
trimers, for instance, there are three and four such
ions, respectively, and that the Ca/Si ratios, respec-

*Personal communication, H. M. Jennings, Northwest-
ern University, 1996.

tively, are 1.5 and 1.33. Water molecules terminate
the chains but do not affect the charge balance.
Should Ca/Si exceed 1.5 in dimeric C-S-H or ex-
ceed 1.33 in trimeric material, hydroxil ions or
other negative ions would probably be incorpo-
rated within the gel to preserve its electrical neu-
trality. The degree of polymerization is around two
to three in ordinary hardened cement and in-
creases to about four as the water/cement (w/c)
ratio! decreases, as evident from studies using
solid state 29Si nuclear magnetic resonance spec-
troscopy (Sellevold et al. 1994, Justnes et al. 1990,
1992). It also increases upon the addition of silica
fume (see Silica Fume). The higher degree expels
water, which then participates in the hydration re-
action.

The degree of polymerization may control the
strength of C-S-H, just as it governs the strength
of carbonaceous polymers, although this point has
not been established. In keeping with it, however,
is the strengthening which accompanies both the
reduction in w/c and the addition of silica fume
(Mehta and Montiero 1993). In natural silicate
minerals, SiO,~* tetradedra are linked together in
various ways, depending upon the metal ion con-
centration. For instance, when combined with
metal oxides like CaO, MgO and Al,O3, the de-
gree of polymerization increases with decreasing
amounts of metal (Ashby and Jones 1986) and the
structures that form depend upon how the oxy-
gen atoms are shared: chains from the sharing of
two oxygens between tetrahedra, sheets from the
sharing of three oxygens, and networks from the
sharing of four. If C-S-H exhibits similar behavior,
then perhaps a variety of morphologies (stringy,
filmy, and networky) develop depending upon the
local chemistry, i.e., on whether the C-S-H formed
from the hydration of alite (impure C3S), or belite
(impure C,S) and whether the other primary con-
stituents of portland cement, C;A and C,AF, par-
ticipated.

Porosity

The pores are important because they hold the
water that freezes upon cooling. In this sense, hard-
ened portland cement is analogous to soil. The
difference is that soils are composed of discrete
particles that contact at isolated points. Hardened
cement, on the other hand, like sedimentary rock
(Jaegar and Cook 1979), is better viewed as a solid

Tin keeping with standard practice w/c defines the
ratio of the weight of water to the weight of cement.



Table 1. Calculated porosities from Powers-Brownyard (1947) model (Taylor

1992).
Fraction Total
of cement Capillary Gel water
w/c ratio hydrated porosity porosity porosity

0.3 0.00 0.49 0.00 0.49
0.3 0.79 0.00 0.27 0.27
0.4 0.00 0.56 0.00 0.56
0.4 1.00 0.03 0.29 0.32
0.5 0.00 0.61 0.00 0.61
0.5 1.00 0.15 0.26 0.41
0.6 0.00 0.65 0.00 0.65
0.6 1.00 0.24 0.23 0.47

skeleton traversed by a more or less interconnected
network of pores. The pore volume (capillary plus
gel pores, but excluding air pores) is governed
mainly by the w/c ratio. For instance, the pore
volume fraction within fully hydrated portland ce-
ment decreases from around 0.5 at w/c = 0.6 (Table
1), to about 0.3 at w/c = 0.3-0.4 (Powers and
Brownyard 1947). The pores within the driest ce-
ment (w/c = 0.3) are essentially of the gel type
only.

It is necessary to consider not only pore size,
but also area, size distribution, shape, roughness,
and connectivity (Smith et al. 1994). Measurement
of these characteristics is not easy (Taylor 1992)
and is discussed at length in Appendix A. Assess-
ments are commonly based upon the penetration
of the pore system by fluids, and so depend upon
the characteristics of the penetrant as well. For in-
stance, owing possibly to differences in size (Rarick
et al. 1995), nitrogen (0.44 nm), and other nonpo-
lar sorbates are less penetrating than water (0.39
nm) and so give lower measures of surface area
(Jennings 1996*; also see Taylor 1992). The exami-
nation may alter the structure, both during the pre-
treatments to drive off adsorbed water and dur-
ing the penetration. For instance, drying 6-month-
old portland cement (w/c = 0.4) for one week at
105°C after storing at 100% relative humidity in-
creases significantly its bulk resistivity after
rewetting (Christensen et al. 1994). Jennings (1996)
finds that the use of mercury as a penetrant dam-
ages the pore structure owing to the high pres-

*Personal communication, H. M. Jennings, Northwest-
ern University, 1996.

sure needed for penetrating small spaces. Other
concerns include the restriction to entry of the
penetrant by the neck of the pore and the effect
this has on its apparent size. Wettability is also an
issue and is particularly relevant to the use of
mercury intrusion porosimetry: the wetting angle
there is assumed to be about 130°-140° (Good
1984). Importantly, it is the cosine of this angle to
which the size is related, and so uncertainty here
leads to uncertainty in the pore size distribution.
Moreover, assessments by gas adsorption and
fluid penetration alone seem to ignore the possi-
bility that the pores may not be truly Euclidian
objects, but rather part of a fractal structure (Allan
etal. 1987). In such a case, nuclear magnetic reso-
nance spectroscopy and scattering methods (Smith
etal. 1994 ) such as neutron scatteringJr would help
to obtain a more complete picture. The net result
is that the pore structure is not completely re-
solved.

Nevertheless, several points are clear. The in-
ternal surface area of fully hardened portland ce-
ment is relatively large. From adsorption measure-
ments using water vapor, Powers and Brownyard
(1947) obtained a value of 175 m2/g. The area is
now considered to be around 200 m2/g (Rarick et
al. 1995). It is also clear that the size distribution
within well cured pastes is quite broad, ranging
mainly from around 3 to 100 nm (Taylor 1992) (Fig.
1), the gel pores being the smallest ones. The range
extends to about 1000 nm or larger in young pastes
and to 1 mm or more when air bubbles are in-

Tpersonal communication, R.A. Livingston, Federal
Highway Administration, 1996.
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Figure 1. Pore sizes in portland cement (Feldman 1981, from

Taylor 1992).

cluded. Reductions in the w/c ratio shift the dis-
tribution to finer sizes, owing to a reduction in the
number density of capillary pores (Parrott 1989).
The fraction above 4 nm, for instance, decreases
from 0.26 to 0.07 upon reducing w/c from 0.65 to
0.35 (Parrott 1986).

Pores are often classified by their diameter ¢
using nomenclature of the International Union of
Pure and Applied Chemists (Gregg et al. 1982, Sing
et al. 1985): micropores (¢< 2 nm), mesopores (2 <
@< 50 nm), or macropores (¢>50 nm). This classi-
fication is rather artificial, because it is based more
on limitations of technique than on physical and
chemical characteristics.

Imagining the pore structure is a challenge. One
image is of a bundle of roughened grapes, the
grapes themselves being C-S-H nodules about 5
nm in diameter (Allan et al. 1987) and the spaces
between, the pores. This image suggests somewhat
cuspy holes of different sizes with rough surfaces,
interconnected at their necks. A variation is to
imagine not only linear or string-like bundles, but
also plate or foil-like arrays. Another picture, as
already implied, is of unfilled spaces within a mix-
ture of strings, films, and networks. The more Eu-
clidean model is the easier to imagine and so is
the one adopted here.

Interfacial transition zone

Although implied, the cement binder is not nec-
essarily homogeneous. Instead, in at least some
concretes, it exhibits gradients within the vicinity
of the aggregate/matrix interface: gradations in
porosity, in portlandite (CH) and in anhydrous
cement. In other words, the microstructure of the

paste near the aggregate appears to differ from that
within the bulk (Taylor 1992). In fact, an interfa-
cial transition zone (ITZ) has been identified by
some writers (e.g., Mehta and Montiero 1993) as a
distinct phase to which separate properties are
given. That the interfacial region may be signifi-
cant is evident from the fact that the particles of
aggregate are separated by rather small distances,
implying that a large fraction of the interparticle
volume may be composed of microstructural gra-
dients.

The ITZ is thought to be a shell-like region,
about 30-50 um thick, which surrounds the ag-
gregate particles (Farran 1956, Hadley 1972, Barnes
1978, Ollivier etal. 1980, Monteiro and Mehta 1985,
Scrivener and Gartner 1988). Within the zones, the
levels of porosity and of portlandite are consid-
ered to be higher than in the matrix; the anhydrous
cement, to be lower. The current view is that, while
controversial, the ITZ appears to be a feature
whose character depends on the details of materi-
als processing, such as the degree of shearing at
the particle/aggregate interface during setting. To
better appreciate the feature a nondestructive
method of characterization is needed.

That the ITZ is real in at least some concretes is
supported by two recent observations. Using scan-
ning acoustic microscopy, Prasad et al. (1996) ob-
served interfacial features that are similar in size
(around 50 um thick) to those noted by Monteiro
and Mehta (1985) and by Scrivener and Gartner
(1988). And Tan (1995) found the specific fracture
energy of interfaces in sandstone mortar (14 1/m2)
and limestone mortar (6 J/m?2) to be much lower
than that of the mortar itself (80 J/m?2). Also, he



noted that when aggregate was positioned well
below the root of a notch, decohesion was initi-
ated not at the root, where the tensile stress was
highest, but at the aggregate/mortar interface.
Whether the ITZ plays a role in ice damage is
not clear. The attendant porosity, however, sug-
gests that it could, for the spaces are probably filled
with water when concrete is fully saturated.

Experimental techniques

Only a few experimental methods have been
mentioned in the above discussion. In fact, many
different techniques have been used to examine
the microstructure. These are described and dis-
cussed in Appendices A-C. Small angle neutron
scattering and environmental scanning electron
microscopy are particularly worth noting. The
former method provides information on the spa-
tial array; the latter method offers the possibilities
of diffraction analysis and chemical analysis us-
ing energy dispersion spectroscopy, techniques
which have not yet been exploited. Other meth-
ods not yet applied to concrete are also discussed.

A complete picture of the microstructure will
require the application of advanced techniques to
reveal both the temporal and its spatial character.

ICE DAMAGE: THE FACTORS

Given that concrete is a porous material, it is
not surprising that water, if not there initially, can
enter during service and generate disruptive pres-
sures upon freezing. Damage so generated is
termed ice damage. It is initiated through the
nucleation, growth, and interaction of microcracks.
These processes usually occur internally. They are
manifested by volume expansion during cooling
(Powers and Helmuth 1953, Beaudoin and Maclnis
1974) and by macroscopic cracks that develop af-
ter repeated cycles of freezing and thawing. The
damage is exacerbated by deicing salts, which lead
to spalling or scaling of the surface. Concrete pave-
ments, bridge decks, bridge piers, runways, side-
walks, and water supply systems, for instance, are
all vulnerable. Susceptibility is usually assessed
using a standard laboratory test: ASTM C 666
measures residual dynamic modulus of elasticity;
ASTM C 671 measures dilatation; and ASTM C
672 and the Swedish Standard SS 13 72 44 mea-
sure the scaling resistance of a horizontal surface
in the presence of deicing salts or other chemicals
(Pigeon and Pleau 1995). Several factors are im-
portant.

Water/cement ratio

A major factor is the w/c (water/cement) ra-
tio. It determines not only the total capillary po-
rosity (Powers and Brownyard 1947), but also the
pore size distribution (e.g., Parrott 1989). As al-
ready noted, the lower the ratio, the lower is the
porosity and the fewer are the larger pores within
well cured cement, implying a lower maximum
potential water content. Also, the permeability is
lower, implying greater difficulty for water to en-
ter the paste. Correspondingly, the resistance to
freeze-thaw damage is greater (Verbeck and
Landgren 1960, Marchand et al. 1995, Pigeon and
Pleau 1995, Thorpe 1996).

The w/c effect is often coupled with a second
one, namely the spacing of air bubbles (see next
section), and then quantified in terms of a critical
spacing L. below which ice damage, or at least the
rate of damage, is suppressed. For instance, Okada
et al. (1981) subjected different concretes to 300
cycles of rapid freezing in water according to
ASTM C 666(A) and found that the resistance in-
creased (i.e., L, increased) for w/c < 0.4 (Fig. 2).
Kobayashi et al. (1981) and Pigeon (1989) obtained
similar results. At low w/c ratios (<0.3) concrete
apparently becomes immune (Gagne et al. 1990).
Further work, in which the ASTM C 666(A) test
coupled with pulse velocity and length change
was used to evaluate 17 high-strength concretes,
suggests that the critical w/c ratio may be some-
what greater than 0.3 in some mixes, but around
0.25 or lower in others (Pigeon and Langlois 1991),
depending upon the fineness of the cement (more
below) and upon the length of curing. Both fac-
tors influence the pore structure and thus the wa-
ter content.

The w/c effect offers a way not only for lessen-
ing the vulnerability to ice damage, but also for
raising strength. The latter property also increases
as the porosity decreases (Kendall et al. 1983).

Entrained air

Entrained air is another major factor. When
intentionally incorporated to around 5-7% of the
volume of the concrete and appropriately distrib-
uted, ice damage can be greatly suppressed (e.g.,
Powers 1949, Powers and Helmuth 1953, Pigeon
and Pleau 1995). Lower values are ineffective and
higher levels weaken the material too much. The
bubbles are actually incorporated within the ce-
ment binder and of that phase represent about 15—
20% of its volume (Mindess and Young 1981). They
are globular in shape, range in size from about 1
pum to 1 mm (although most fall within the range
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10-100 um) and are spaced around 100 um at the
concentration noted (Pigeon and Pleau 1995). Air
entrainment is now standard practice in cold cli-
mates. Whether it will continue to be for high per-
formance/high strength concretes is an open ques-
tion (El-Korchy et al. 1995), for the low w/c ratio
may impart sufficient protection without the risk
of weakening the material. While it may turn out
to be more cost effective to produce durable con-
crete using an appropriate dispersion of air
bubbles than by lowering the w/c ratio, as Thorpe

Water-Cement Ratio (by mass)

(1996) suggests, this practice would be at the ex-
pense of strength.

Alir is entrained through the addition to the par-
ent mix of small amounts (e.g., 0.2 to 1.0 mL/kg
cement) of various chemicals, such as alkyl-ben-
zyl sulphonates and salts of fatty acids, wood resin,
and sulphonated hydrocarbons. These chemicals
are surfactants that cause the mixing water to foam
by lowering the air/water surface tension. The
effect is to stabilize air bubbles, which then become
entrained within the paste during mixing.

Figure 3. Length change vs. air-void spacing
showing a critical spacing factor (Pigeon et al.
1986, from Marchand et al. 1995).
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The resistance to ice damage is usually related
to the spacing between the bubbles. Figure 3 illus-
trates this point where the resistance is expressed
in terms of the increase in specimen length that
arises from internal cracking. The data were ob-
tained by Pigeon et al. (1986) from a systematic
study of one concrete of w/c = 0.5 made from port-
land cement of one fine aggregate, one coarse
(limestone) aggregate, and one curing procedure
(14 days in water at 23°C), cycled in water 300
times between 5° and -18°C at 8°C/hr in accord
with ASTM C 666(A). The resistance remained
high until the average bubble spacing reached
about 500 um, above which it fell rapidly. Other
studies show a similar effect, as reviewed by Pi-
geon and Pleau (1995). The spacing which marks
the transition from durability to nondurability is
termed the critical spacing factor L. Values rec-
ommended for concrete design are around L. =
200 to 250 pum (Powers 1949, Backstrom et al. 1958).
The average size of bubble is usually specified in
terms of a specific surface area of around about
230 cm2/cm3 (Thorpe 1996). These specifications
translate roughly to about 250 x 103 bubbles/cm3
of around 100-um diameter in cement paste whose
air fraction by volume is between 0.15 and 0.2.

Not all investigators accept the idea of a clear
relationship between ice damage and the bubble
spacing (Mielenz 1968, Gjorv et al. 1978, Mather
1978). A possible resolution may be found in work
by Litvan (1983). He observed that the volume of
intermediate-sized (0.35- to 2-um) pores, equiva-
lent to the largest capillary pores, was higher
within air-entrained concrete than within plain
material. The beneficial effect, he suggested, may
relate to these smaller features and not to the larger
(typically 10- to 100-um) air bubbles.

Even when air bubbles are present in sufficient
number and in the appropriate distribution, in-
ternal cracking still occurs. Presumably, the criti-
cal spacing factor depends on the number of cycles
and on the minimum temperature.

Degree of saturation

In the laboratory, material is usually fully satu-
rated before being cycled. In the field, however, it
may not be, depending on the availability of wa-
ter, say as humidity in the atmosphere, and on the
time available for ab/desorbing it. In other words,
in practical situations, concrete may be less than
fully saturated. For instance, the degree of satura-
tion of concrete pavements in this country ranges
between about 0.8 and 0.95 (Vanderhorst and
Janssen 1990). It turns out that ice damage is
not a problem when the degree of saturation is
sufficiently low, even for non-air-entrained con-
crete (Maclnnis and Beaudoin 1968, Litvan 1972b).
The degree of saturation is thus another major
factor.

Fagerlund (1971), Litvan (1973), and Enustun
etal. (1994) have studied this point. The degree of
saturation S is defined as the ratio of the weight
of evaporable water (including the gel water)
within the material at the time of freezing divided
by the weight of evaporable water at complete
saturation from the oven-dried (at 50°C) state to a
state of constant weight under vacuum. From a
series of experiments performed on non-air-en-
trained concrete of w/c around 0.4 to 0.5,
Fagerlund (1977) concluded that the critical de-
gree of saturation S, is about 0.8 (Fig. 4). The S,
value in these experiments was obtained from
measurements of the dynamic Young’s modulus
normalized with respect to the undamaged modu-
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Figure 4. Dynamic Young’s modulus (normalized) vs. degree of saturation for con-
crete measured in five different laboratories (Fagerlund 1977).



lus, following six freeze-thaw cycles to —18° or
—20°C at a rate of 2° to 4° C/h. The actual value
varies somewhat from one concrete to another,
reflecting variations in the microstructure.

Note that the period of ice-immunity is gov-
erned by the kinetics of water absorption, and this
is inversely related to the size of the pores. Thus,
concretes containing smaller pores more quickly
become saturated. Absorption Kinetics also de-
pend on the concentration of the water available,
and has been considered by Fagerlund (1977).
Note, too, that the specific value obtained for S
reflects a specific procedure which includes pre-
drying at elevated temperatures. This step leads
to a greater amount of freezable water and thus to
less freeze-thaw durability. It implies, as already
noted, that the process alters the initial pores size
distribution. In turn, this further implies that the
predrying affects the absorption kinetics. Note also
that the critical degree of saturation of 0.8 applies
to the specific lower temperature noted above.
Presumably, a lower degree of saturation would
be needed for ice-immunity, albeit temporary,
upon cycling to a lower temperature. Internal
cracking still occurs for S < S, as evident from the
reduction in the normalized modulus (Fig. 4), im-
plying that even the drier material will eventu-
ally disintegrate.

Predrying at ambient temperatures appears to
improve the durability during subsequent freeze—
thaw cycles, at least of the type prescribed by
ASTM C 666 (Thorpe 1996). An implication is that
it may be difficult to correlate field performance,
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where predrying typically occurs before freezing,
with performance in the laboratory where com-
plete saturation usually precedes the cycle.

Aggregate

The aggregate is porous and thus vulnerable to
ice damage. Porosities less than a few percent are
generally desirable (Pigeon and Pleau 1995). Fine
aggregate (i.e., <4.75 mm) is not an issue: this fol-
lows from the observation (Maclnnis and Lau
1971) that the finest aggregates within material of
various w/c ratios (0.6 to 0.45) led a stable prod-
uct upon cooling to —18°C. On the other hand, in
the same experiments coarse aggregate (10 and 20
mm) led to marked lengthening. This behavior is
related more to the pore size distribution than to
the total porosity, as evident form Kaneuiji’s (1980)
tests [ASTM C 666(A)] on concretes made from 14
different types of aggregates. His results showed
that the durability of the concrete increased with
increasing coarseness of the aggregate pore sys-
tem for a given aggregate pore volume (Fig. 5).
The aggregate to avoid is the one with both a rela-
tively high porosity (>5% ) and a fine pore struc-
ture.

Type of cement

The type of cement appears not to be a major
factor, at least in the freeze—-thaw behavior of com-
monly used concretes where w/c > 0.45 (Tyler et
al. 1951, Marchand et al. 1995) For drier concretes,
however, the resistance appears to be better with
finer cement (e.g., Type Ill vs. Type I). The im-
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Figure 5. Showing the increase in resistance to ice damage with
increase in average aggregate pore size (Kaneuji et al. 1980, from

Marchand et al. 1995).



provement is manifested in terms of a larger criti-
cal air spacing factor (800 vs. 250 um).

Freezing rate

The cooling/freezing rate is a factor in some
situations. For example, Pigeon et al. (1985) found
that when specimens (w/c = 0.5) of fully saturated
material were exposed to 300 cycles of rapid freez-
ing and thawing in air from 5° to —-18°C and then
assessed in terms of their increase in length, their
resistance to ice damage (given in terms of the criti-
cal air-void spacing), albeit scattered, seemed to
decrease with increasing freezing rate. Similarly,
Nischer (1976) found that the salt-scaling rate of
two concretes of different w/c ratios (0.45 and 0.70)
exposed to 25 freeze-thaw cycles increased by
about a factor of two upon increasing the freezing
rate (to —20°C) by about a factor of two from 2.4 to
4.2°C/hr. On the other hand, salt-scaling tests
(Sellevold 1988) showed a small but opposite ef-
fect, owing perhaps to the submerging of speci-
mens in a salt solution.

More recently, Fagerlund (1992) has suggested
that the freezing rate is probably not a factor when
the material is sealed to prevent the exchange of
moisture between the specimen and its surround-
ings.

Minimum temperature

Given that not all pore water freezes at the same
temperature (more below), it would seem that the
minimum temperature should be an important
factor in ice damage. However, few data are avail-
able on this point. Marchand et al. (1995), in fact,
suggest that the minimum temperature is not a
factor. Pigeon and Pleau (1995), on the other hand,
indicate that lower temperatures are more dam-
aging. Perhaps it depends on how rapidly the
material is cycled and, thus, on the time available
for solidification. Kinetics, in other words, may be
important.

Holding time

Similarly, few data are available on holding
time. The indication, however, is that longer times
are more damaging (Stark 1989). This factor may
be important in the field where, relative to the labo-
ratory, longer times and lower cooling rates are
encountered.

Curing temperature

The curing temperature is a factor in high-per-
formance material where the relatively low w/c
ratio can lead to temperatures around 80°-90°C

during the early stages of hydration (Sellevold et
al. 1994). Although few, the data indicate that the
higher the temperature, the lower is the resistance
to ice damage. For instance, during the cooling (at
3.3°C/hr) of water-saturated mortar (w/c = 0.50)
to —-11°C, about five times more ice formed (as
detected calorimetrically) within material predried
for three days at 50°C than within virgin mortar.
Correspondingly, the predried and resaturated
material lost through scaling about 18 kg/m?2 af-
ter 56 freeze-thaw cycles (SS 13 72 44), compared
with about 1 kg/m?2 from the virgin mortar
(Jacobsen and Selloveld 1993). Similarly, the aver-
age surface scaling of six different concretes (w/c
= 0.45) cycled about 28 times in the presence of
deicer salts (according to ASTM C 672) was 5 kg/
m2after curing in moist heat at 65°C for 1 day com-
pared with about 1 kg/m? after moist curing at
normal temperature for 2 days. These effects have
been attributed to a coarsening of the pore struc-
ture (Sellevold et al. 1994), despite the fact that
mercury intrusion porisometry indicated that the
pore size distribution shifted to smaller sizes upon
warm curing.

That finer pores correlate with greater damage
is consistent with the point noted about the vul-
nerability of aggregate. It is also consistent with
the dictates of theoretical models discussed below
(see Thermodynamic Models).

Silica fume

Silica fume (or microsilica) is a by-product of
the production of ferrosilicon and is now com-
monly added to concrete to improve its strength
(Roberts 1989). It occurs usually in the form of ex-
tremely fine, amorphous powder (0.1 um) and
typically constitutes about 5-10% by weight of the
portland cement. It activates the pozzalanic reac-
tion CH + S+ H - C-S-H and effects a more uni-
form distribution of the hydration products. It also
increases the length of the C-S-H polysilicate chain
from around 2 to 4 units (Sellevold et al. 1994), as
already noted.

Its effect on ice damage is inconsistent. For in-
stance, the addition (10 wt. % of cement) to a nor-
mal concrete of w/c = 0.5 subjected to 300 rapid
cycles of freezing and thawing in water (accord-
ing to ASTM C 666A) reduced from about 500 um
to about 250 um the critical spacing factor for en-
trained air bubbles. This implies a deleterious ef-
fect (Pigeon et al. 1986), and would be consistent
with a refinement of the pore structure (Roberts
1989). In comparison, the addition (6 by wt. of ce-
ment) to concretes of lower w/c ratio (0.25-0.3)



made from Type-1lI cement (Pigeon et al. 1991)
revealed little significant effect, as assessed
through the same number/kind of rapid free-thaw
cycles. On the other hand, silica fume (4-6%)
added to roller compacted concrete of w/c = 0.4
reduced by about a factor of five the amount of
spalling in the presence of deicing salts of speci-
mens subjected to 56 cycles of the Boras test
(Horrigmoe and Rindal 1990).

More systematic experiments are needed to
fully assess whether, and if so under what condi-
tions, silica fume affects ice damage.

Superplasticizers

Superplasticizers or water-reducing admixtures
are generally added to concrete to increase either
workability or strength or both. They are usually
based on sulphonated melamine formaldehyde or
sulphonated napthalene formaldehyde (Pigeon
and Pleau 1995).

Their effect on ice damage appears to be rather
small. For instance, Pigeon and Langlois (1991)
showed through ASTM C 666 tests that the criti-
cal air spacing factor of two plain concretes of w/
¢ =0.5with (10% by wt. cement) and without silica
fume was not significantly affected by
superplasticizers. And Thorpe et al. (1996) con-
cluded from similar tests on 60 different mixes that
superplasticizers do not negate the need for awell-
developed system of air bubbles for freeze-thaw
durability.

Alkalis

Alkalis are soluble impurities in cement. They
stabilize the air-void system (Pigeon et al. 1992,
Pistilli et al. 1983) and so might be expected to have
a beneficial effect on the resistance to ice damage.
On the other hand, should they assist cracking (see
Thermodynamic Models) when concentrated at the
ice/water interface, they could have a negative
effect. Their role in ice damage is an open ques-
tion.

Viscosity-modifying admixtures

Starches, gums, plant protein, and other natu-
ral polymers are sometimes added to thicken con-
crete mixes, to enhance cohesiveness and to lessen
the separation of the constituents during transport,
placement and consolidation (Izumi 1990). Con-
cerning ice damage, welan gum and hydroxy-
propyl methylcellulose have little effect, at least
on hardened concrete (w/c = 0.32, 0.40, and 0.45)
when assessed using ASTM C 666 and ASTM C
672. Presumably, other additives of the same type
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are equally benign. The only proviso is that an ad-
equate (L. = 250 um) air-void system be main-
tained (Khayat 1995). If not, then the resistance is
lowered (Fukudome et al. 1992).

Latex modification

Latex increases the fluidity of fresh concrete and
significantly improves the resistance to both in-
ternal microcracking and surface scaling (Bishara
1979). Bordeleau et al. (1993) quantified the effect
through experiments on limestone cements of
three w/c ratios (0.30, 0.35, 0.40) containing zero,
7.5 and 15% (by weight of cement) styrene buta-
diene. The specimens were moist-cured for three
days, and then subjected to 100 freeze-thaw cycles
in the presence of a 2.5% NaCl solution, in accor-
dance with ASTM C 672. In terms of the scale pro-
duced, the 100-cycle deterioration was around 1.6,
0.6, and 0.1 kg/m?, respectively, for the 0, 7.5 and
15% additions.

Latex stabilizes air bubbles (Bordeleau et al.
1993) and refines the pore system. For instance,
Ohama et al. (1985) found that the average pore
radius (nm)/pore volume (cm3/g) of a particular
concrete decreased from about 100/1000 to 45/650
to 15/480 upon increasing the styrene butadiene
concentration from 0 to 9 to 17% (by weight of ce-
ment). The latex may also coat the surface of the
pores, thereby reducing the wetting angle. Which,
if either, modification accounts for the effect is not
known. However, for reasons which will become
apparent (see Thermodynamic Models), pore refine-
ment is not considered to be beneficial.

A latex-modified surface layer, although ini-
tially more expensive from the perspective of ma-
terials cost, would seem like a effective method
for reducing ice damage to pavements and bridge
decks and thus for increasing their service life.

Sealants

Sealants seem to impart little improvement. For
example, Litvan (1992) examined eight types of
mortar (cement: sand = 1 : 2) and 57 different or-
ganic and inorganic sealants. The specimens were
contaminated with NacCl, dried, coated, and then
subjected to 300 freeze-thaw cycles [ASTM C
666(A)]. Resistance to ice damage was assessed in
terms of the residual expansion. Based upon 0.02%
expansion, the sealants effected little consistent im-
provement. In fact, certain sealants actually low-
ered the resistance. Sedran et al. (1993) also found
a deleterious effect, with oligomeric siloxane and
polymeric siloxane: both sealants increased scal-
ing in the presence of NaCl solution by a factor of



six. The reason for the negative results is not clear,
but may be related to the possibility that sealants
impede not only the entry of water, but also its
expulsion.

Incidentally, Wyner (1995) recently patented a
method for introducing into concrete pavement a
polymeric resin, using a high pressure air gun,
claiming protection against ice damage. Given the
inconsistent results noted above, skepticism seems
appropriate.

Microfibers

The possibility of suppressing ice damage
through the incorporation of microfibers has not
been examined (Pigeon and Pleau 1995). Perhaps
it should be, given the beneficial effects of fibers
on strengthening and toughening of concrete
(Ouyang and Shah 1992, Banthia 1992, Tjiptobroto
and Hansen 1993, Mindess 1994, Low et al. 1994).
Fibers act as both load-carrying and crack-bridg-
ing elements. As such, they could increase the
crack tolerance of the C-S-H matrix, provided that
they are fine enough.

Possible candidates are steel and carbon, in rec-
ognition of current research on these materials in
concrete (Mindess 1994, Ouyang and Shah 1992).
A better fiber in terms of cost may be the natu-
rally occurring mineral Wollastonite; i.e., calcium
meta-silicate (3-CaO-SiO,). This material has been
used in the development of phosphate cement for
dental applications (Bathnia and Sheng 1990) and
in the production of tiles and cement boards
(Semler 1975, Otouma et al. 1979). More recently,
Low etal. (1992, 1993, 1994) established that these
fibers (2-21% by volume; 25-diam. x 50-600 um),
roughly double the flexural strength and tough-
ness of portland cement (w/c¢ = 0.35). When com-
bined with silica fume (about 10% by weight of
cement), the Wollastonite more than tripled the
values of these properties.

In pursuing further the possibility of fiber-en-
hanced durability, attention should be given to fi-
ber length relative to crack size. For short cracks,
long fibers impart greater strength but less tough-
ness than short fibers (Budiansky and Cui 1995).

Applied load

Concrete in service is usually loaded, yet there
is almost no literature on whether load affects the
freeze—thaw resistance. The only published study
appears to be one by Zhou et al. (1994). They ap-
plied static flexural loads of up to 50% of the fail-
ure load to both air-entrained and non-air-en-
trained beams of relatively dry mortar with (about
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Table 2. Summary of the factors.

Intrinsic Extrinsic

w/c ratio (M)*
Entrained air (M)

Degree of saturation (M)
Freezing rate

Aggregate Minimum temperature
Type of cement Holding time
Silica fume Curing temperature
Superplasticizers Sealants
Alkalis Applied load
Viscosity— modifying

admixtures
Latex modification
Microfibers

*Major effect

10% by weight of cement) and without silica fume,
and then measured the dynamic elastic modulus,
after rapidly cycling the specimens according to a
modified ASTM C 666 procedure. The load had
no effect on the air-entrained material, but in-
creased significantly the damage to the non-air-
entrained mortar. For instance, a load of 50% of
the failure load reduced by more than a factor of
four the number of cycles required for disintegra-
tion. The effect on the non-air-entrained material
was lessened through the addition of silica fume
and was essentially eliminated by both adding
silicaand lowering the w/c ratio from 0.35 to 0.25.
In wetter mortars (w/c¢ = 0.45), however, silica
fume was ineffective in suppressing damage to the
non-air-entrained material. It thus seems that
preloading is not a major issue, as long as air en-
trainment is incorporated. However, firm conclu-
sions require further work.

Summary
Table 2 summarizes the ice damage factors. M
implies a major effect.

ICE DAMAGE MECHANISMS

In considering the damage mechanisms, the
problem is to understand the interaction between
the pore water and the C-S-H matrix. “Bound
water” (the interlayer water plus that adsorbed as
a monolayer or so on the surface of the pores) is
usually not considered because it does not begin
to freeze until the temperature is lowered to -78°C
(Powers and Brownyard 1947). Acomplete under-
standing of the problem probably requires the con-
sideration of all water for, as we shall see, ice dam-
age is related in part to the movement of water. In
some cases, this movement may be facilitated by



the bound water. The movement of water, inciden-
tally, is also fundamental to the creep of concrete
(Hansen and Young 1991, Bazant 1972, 1982, 1995).

The destructive pore water C-S-H interaction
results from the formation of ice, either internally,
externally or both. Nucleation is usually not an
issue. In principle it can be suppressed owing to
supercooling (Helmuth 1960, Grubl and Stokin
1980)—in fact, has been suppressed to as low as
-15°C (Helmuth 1960). In practice, however, nucle-
ation occurs quite easily because there are usually
enough sites at which heterogeneous nucleation
can occur, such as the external surface or the sur-
face of an entrained air void. The implication is
that freezing begins somewhere in the system at a
temperature close to 0°C, as observed (Powers and
Helmuth 1953, Beddoe and Setzer 1988). The is-
sue, therefore, is the growth of ice within the net-
work of pores.

Early explanations invoked the “milk bottle”
effect. The idea was that the interaction results sim-
ply from the 9% expansion in volume that accom-
panies the liquid-solid transformation. Perhaps
something of this kind occurs at isolated sites
where, as Bazant et al. (1988) suggest (after Pow-
ers et al. 1959), the pores may not be intercon-
nected. However, following Powers (1945), better
explanations recognize that concrete is not a closed
vessel. The pore water within it not only freezes,
but also migrates under the appropriate driving
force, thereby creating in some way the internal
disruptive tensile stresses that generate the dam-
age.

The following discussion proceeds from the ba-
sis that the solidification and the movement of
water are key to understanding damage. Essen-
tially, two kinds of model are considered, one in
which water migrates from the freezing sites, the
other in which water migrates toward them.

Hydraulic pressure theory

The hydraulic pressure theory (Powers 1945,
1949) holds that the expulsion of water from the
freezing sites creates stresses within the walls of
the pores, much like water flowing through a hose
creates hoop stresses. When sufficiently large, the
stress ruptures the wall. The attractive feature of
this model is that the maximum pressure P,,, can
be quantified in terms of the viscosity of the wa-
ter n, the degree of saturation s, the rate of ice for-
mation u, the rate of cooling c, the permeability K,
and the maximum distance the water must travel
to the escape boundaries A. Accordingly (Powers
1949),
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Pmax = N(1.09 - 1/s)ucA/3k. (D)

The model thus accounts for the effects of satu-
ration and of entrained air (A decreases as air po-
rosity increases) and it recognizes the importance
of capillary porosity through its direct relationship
to permeability. Also, it accounts for expansion
during freezing (Powers and Helmuth 1953). In
predicting an effect of cooling rate, however, it
contradicts the generally observed absence of such
an effect (Fagerlund 1992). Also it fails to account
for damage to/expansion of non-air-entrained
cement paste under constant temperature (Pow-
ers and Helmuth 1953).

Thermodynamic models

The second kind of model is based upon equi-
librium thermodynamics and considers the move-
ment of water toward the freezing sites. An im-
portant concept is the chemical potential and its
gradient, along which H2O moves.

Chemical potential of a species is expressed in
terms of molar free energy and activity. For a
single-component system the activity is unity, and
so the chemical potential and the molar free en-
ergy are the same. For equilibrium between ice and
water, for instance, the chemical potential of H,O
must be the same in both phases. The chemical
potential pis a function of both temperature T and
pressure P, and changes in potential may be ex-
pressed by

du=VdP - SdT (2
where V is the molar volume and S is the molar
entropy. Vapor is more entropic than the con-
densed phases and water is more entropic than
ice. A change in temperature, therefore, has the
largest effect on the chemical potential of water
vapor and the smallest effect on the potential of
ice. Similarly, gases have the largest molar volume,
and so a change in pressure has the largest effect
on the chemical potential of the vapor. The molar
volume of ice is greater than the molar volume of
water, and so a change in pressure has a greater
effect on the chemical potential of ice than water.
Considerations like these account for the H2O
pressure-temperature diagram.

Freezing point depression

Now consider the water within the pores of ce-
ment, say at a temperature just above the normal
freezing point of bulk water. It is held there by
capillary forces and is assumed to be in equilib-
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Figure 6. Schematic sketch of water within a capillary pore.

rium with the vapor. Wetting is defined by the
angle @ (Fig. 6), given by

c0s @ =(Yyw— Yiw)/Yiv 3)

where wyw = vapor/wall interfacial energy
viw = liquid/wall interfacial energy
viv = liquid/vapor interfacial energy.
Based upon adsorption/desorption and expan-
sion/contraction studies (Amberg and MciIntosh
1952, Feldman 1970), water is separated from the
vapor by a meniscus concave toward the liquid.
The meniscus creates negative pressure AP within
the liquid; i.e., the water is under tension. For cy-
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lindrically shaped pores of radius r the pressure
difference is given by

AP =2y, cos d/r. 4

In other words, the negative pressure lowers
the chemical potential of water by the amount

Ay =V AP ®)

where V| is the molar volume of water (Fig. 7).
The implication is that the freezing point of the
capillary water is also reduced, by an amount
given by (see App. D)
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Figure 7. Schematic sketch of chemical potential of
water (I) and ice (s) vs. temperature, showing the low-
ering of the freezing point by reducing the potential
of water.
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AT =-2T, Yy V| cos®/Lr (6)

where T, is the normal freezing point and L is the
molar latent heat of fusion (taken here to be a posi-
tive quantity). The smaller the pore, the greater is
the suppression. For instance, assuming complete
wetting (®= 0) and using Y, = 75.7 mi/m?2 (the
value at 0°C, Petrenko 1994), V| = 1.8 x 105> m3/
mole and L = 6.04 x 103 J/mole, the freezing point
of the water within pores of 100-, 10-, and 1-nm
radius, respectively, is estimated to be -0.6°,-6.1°,
and -55°C.

Adistribution of pore sizes thus implies a range
of freezing points. This point is in agreement with
the emission of heat over a range of temperatures
(Sellevold et al. 1994) during the cooling of fully
saturated hardened cement. It is also consistent
with results from quasi-elastic neutron scattering
(El-Korchy et al. 1995), which show that hardened
portland cement contains unfrozen water at sub-
zero temperatures as low as —40°C.

Crystal pressure theory

Not clear from the above analysis is how the
disruptive internal pressure develops, nor how
saturated cement continues to expand at a con-
stant temperature. These points can be understood
by considering crystal growth (Everett 1961).

To begin, it is important to recognize that wa-
ter is not the only liquid that can damage cement.
For instance, benzene dilates saturated hardened
cement paste (w/c = 0.5) when cooled at 2.5°C/s
from room temperature to —20°C (Beaudoin and
Maclnnis 1974). The dilation begins at 5°C where
the absorbate begins to freeze. Similarly, organic

liquids induce expansion of porous Vycor glass
upon cooling to below their bulk freezing points
(Litvan 1972a, Kipkie et al. 1972), benzene expands
saturated soil (Hoekstra et al. 1965), and organic
liquids damage rock (Everett 1961). In each case
the organic liquid contracts upon freezing. The
damage to the host is caused by crystal growth.

To understand crystal growth and how it gen-
erates disruptive internal stresses, consider an
Everett-type (1961) analysis. He modeled an ide-
alized system that consisted of two large water-
filled cylinders, each closed by a piston and joined
by a narrow capillary tube, again in terms of equi-
librium thermodynamics. We adopt the same ap-
proach, but imagine instead a series of water-filled
globular-like large pores connected to each other
and to the external surface (and to internal sur-
faces like air pockets) through a series of small
capillary tubes. Two or more tubes of different ra-
dii connect at least some of the large pores. To es-
timate the response of the system upon cooling,
we simplify the picture by considering a two-pore
“unit element” (Fig. 8) analogous to Everett’s cyl-
inders.

As heat is extracted and the temperature falls,
freezing is assumed to begin in one of the globu-
lar pores just below 0°C, say at a preferential nucle-
ation site, such as a piece of dirt or an asperity on
the wall. As the ice forms, it occupies a greater
volume than the water consumed. This could cre-
ate an excess pressure within the freezing pore
should the rate of freezing be too fast to allow
water to flow through the capillaries to the sur-
faces. Following Everett (1961), we assume that
this buildup does not happen. Instead, we assume
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Figure 8. Sketch showing a saturated, multiply connected, two-
pore element at a temperature above the freezing point of bulk
water.
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Figure 9. Sketch showing the solid/liquid interface (dotted) at two tem-
peratures below the bulk freezing point T,: a) at T, < T, < T, ice has
filled the larger pore, but is confined to this pore; b) at T, =T, ice bulges
into the larger connecting capillary tube.

that freezing continues, but without building pres-
sure until the crystal fills the pore. Freezing then
continues in one of two ways. Either H,O is drawn
through the capillaries to the crystal from the wa-
ter within the adjacent unfrozen pore through
migration down a chemical potential gradient (the
liquid has a higher potential than the solid), or the
ice penetrates the mouth of the largest connecting
capillary tube.

The first process leads to the ice expanding
against the C-S-H walls and, in turn, to swelling
of the cement. Initially, this process is the easier
one. However, as the crystal grows against the con-
straint of the wall, say by the migration of H,O
through the unbound water layer, it becomes com-
pressed and this raises its chemical potential,
thereby lessening the gradient down which H,O
moves. At the same time, the ice in the mouths of
the connecting capillary tubes begins to bulge out.
Spherical bulge caps are assumed (Fig. 9) after
Skapski et al. (1957) who observed such caps at
the ice/water interface in fine glass capillary tubes.
The radius of curvature of the cap issuch that the
attendant increase in the chemical potential of the
ice within the bulge is equal to the increase in po-
tential of the ice constrained by the wall of the large
pore. The ice everywhere then has the same el-
evated chemical potential. For freezing to con-
tinue, more heat must be withdrawn and so the
temperature must fall; otherwise, the ice begins
to melt as its pressure increases. Eventually, how-
ever, as the crystal continues to grow by the mi-
gration of water down the chemical potential gra-
dient, the pressure exerted against its constraint
reaches the point that the radius of curvature of
the ice within the bulge decreases to the radius of
the largest capillary. At this point, the ice begins
to penetrate the tube. Freezing then continues
through the second process and the swelling stops.
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The excess pressure APy, at which ice crystal
growth initiates penetration (provided that the
wall has not ruptured by this time) is given by

AP, =2y (1/r - 1/R) (7
where yj is the ice/water interfacial energy (29.1
mi/m2, Hardy 1977), R is the radius of the large,
globular pore, and r is the radius of the largest cap-
illary. This is achieved at a temperature T, given
by (see App. D)

Tp=To(1-VAPL/L) (8)
where V is the molar volume of ice (2 x 10-5 m3).
For example, penetration into capillary pores of
100-, 10-, and 1-nm radius connected to much
larger globular pores is expected to occur, respec-
tively, at -0.5°, -5.3°, and -57°C; i.e., at a tempera-
ture similar to the expected freezing point of the
capillary water. Correspondingly, the excess pres-
sure AP, is expected to be about 0.6, 6.0, and 60
MPa. Assuming that the pore wall is about as thick
as itiswide, localized hoop-like tensile stresses of
similar magnitudes are expected. Presumably, it
is these stresses that ultimately induce the inter-
nal microcracking, if not during the first cycle then
during subsequent cycles after the wall has been
weakened through a kind of thermal fatigue.

This analysis thus accounts for the disruptive
internal pressure underlying ice damage. The
lower the temperature, the higher is the pressure
and wall stress. Also, in invoking crystal growth
through the transfer of H,O down the chemical
potential gradient, it accounts for the continued
expansion of cement at a constant temperature.
Moreover, it implies that such constant-tempera-
ture growth should stop once the chemical poten-
tial of the ice and water becomes equal, and that it



would resume once the temperature is lowered to
a new level and held. The analysis also indicates
that the factor that controls the pressure, and thus
the wall stress, is the size of the largest capillary
leading out of it (Everett 1961). This implies that
the detailed fine capillary structure relative to the
structure of the coarse pores is extraordinarily
important to ice damage. Supporting the last point
is Litvan’s (1983) observation, already noted, that
his more damage-resistant cement contained a
greater volume fraction of intermediate sized
pores. Also supporting it is Sellevold etal.’s (1994)
correlation of greater resistance of deicer salts
upon coarsening the pores. In other words, the
analysis implies that the freeze-thaw durability
of concrete increases as pore the structure coars-
ens.

That a coarser pore structure may impart
greater freeze-thaw durability is not surprising.
The realization is already incorporated in so-called
durability functions (e.g., Bortz et al. 1990) for ma-
sonry. The problem is to quantify the microstruc-
ture (Livingston et al. 1995) and to know which
measure to use in making predictions. The inter-
nal pressure develops in response to the increase
in the ice/water interfacial area relative to the in-
crease in the volume of the ice crystal (Everett 1961)
dA/dV, but it is not clear how to measure this ra-
tio.

How to coarsen the gel pores is a practical chal-
lenge. Some guidance/encouragement may be
taken from Groves (1985). He noted from a trans-
mission electron microscopy study of C-S-H that
the gel pores in thin foils coarsened during obser-
vation. Either the heat of the electron beam was
responsible or the electron irradiation was, or both.
Particle irradiation would not be practical. Heat-
ing may be. Weakening through coarsening would
probably not be a risk, because the strength-limit-
ing flaws are orders of magnitude larger than the
gel pores (Kendall et al. 1983).

Effect of air entrainment

Within the context of the crystal pressure theory;,
the beneficial effect of air entrainment can be ex-
plained in two ways. One explanation is essen-
tially the one given by Powers and Helmuth (1953).
Accordingly, the bubbles, should they contain
water, act either as preferential or alternative sites
for ice growth. They then compete for water with
the ice within the large pore, for the chemical po-
tential of the ice within the bubble would be lowver,
owing to the absence of a constraint to its growth.
This has the effect of reducing the growth in the
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large pore and, thus, of reducing swelling. How
much the growth is biased in favor of the air
bubbles depends upon the appropriate chemical
potential gradients, and this depends upon the
average spacing of the bubbles. The bias also de-
pends on the transport mechanism, which may be
different for the two sites (more below).

The other explanation is that the bubbles act
as internal spaces of low relative humidity, which
draw water from the connecting fine capillary
tubes, thereby creating water/vapor menisci con-
caving toward the water. In so doing, a hegative
pressure develops within the liquid of each tube,
of magnitude given by eq 4. This negative pres-
sure reduces the excess pressure on the ice at the
point of penetration, thus lessening the swelling.
The ice is then both “pushed/extruded” and
“pulled/drawn” through the capillary tube. Given
that the growth along the tube increases the ice/
wall interfacial area and decreases the water/wall
area (and given that the former is more energetic
than the latter, one could imagine a kind of “ice
flow” resisted by surface drag or “friction,” in
which case the longer the tube the more resistive
the “flow.” The critical spacing factor L. could then
be viewed as the spacing below which the excess
pressure never reaches the tensile strength of the
C-S-H.

The latter view suggests a different interpreta-
tion of certain observations. For instance, perhaps
the latex effect (see Latex Modification) is caused
by a reduction in the “friction coefficient.” Perhaps
variations in the critical spacing factor from one
concrete to another reflect variations in the appro-
priate interfacial energies through variations in the
chemistry and structure of the capillary walls. Di-
rect observations of the wetting angles in each of
these cases, though difficult to make, would be in-
formative.

Deicer salt degradation

Concerning the deleterious effect of deicer
chemicals, two explanations come to mind. One
follows directly from the crystal pressure theory
and invokes the possibility of a kind of stress cor-
rosion cracking. The chemicals/impurities and
localized stress may act in a synergistic manner to
crack the wall of the pore over time. Enhancing
the action may be the concentration of the solutes
at the ice/water interface; i.e., chemical concen-
tration within a region where the stress is also con-
centrated. Speculative though it is, the suggestion
is reminiscent of static fatigue, which is well
known in concrete (Mindess and Young 1981), and



of subcritical crack growth (Bailey 1983).

The other explanation invokes a dendritic ice/
water interface. Such interfaces recently have been
observed (Montiero et al. 1995, Wang et al. 1996)
during the freezing of 0.7 M alkaline solutions
(Ca(OH),, KOH, NaOH). They are significant be-
cause, if characteristic of the interface within the
highly alkaline cement pore water, they imply a
greater increase in interfacial area per unitincrease
in volume of ice dA/dV than obtained for a spheri-
cal interface (for which dA/dV = 8rrdr/4tw2dr =
2/r where r is the radius of the crystal). Corre-
spondingly, the crystal pressure and wall stress
will be greater. Dendritic interfaces develop ow-
ing to the buildup of impurities ahead of the in-
terface and to the attendant lowering of the freez-
ing point, which leads to constitutional supercool-
ing, after Chalmers (1964) and coworkers.

These two explanations could be distinguished
experimentally by measuring the internal stress.
In the stress-corrosion cracking model, the chemi-
cals do not increase the stress for a given subzero
temperature, but just increase its action. In the
dendritic interface model, the chemicals are ex-
pected to increase the pressure.

Internal stress

So far, nothing has been said about the internal
stress, other than to indicate how it may develop
and how to estimate its magnitude. Measurements
are needed. Perhaps they could be made using
neutron diffraction. The idea is to exploit the “in-
ternal” strain gauges represented by the crystal
lattice of the crystalline CH phase or of any of the
other single crystalline constituents of concrete.
(Ice itself would probably not work because at the
temperatures of interest stresses would relax rela-
tively quickly.) Should the stresses/strains be large
enough, they may distort/displace the diffraction
pattern sufficiently to allow their measure. It may
be useful to use heavy water to reduce the inco-
herent background (Steele and Sokol 1994).

Kinetics

Both the hydraulic theory and the crystal pres-
sure theory can account for the internal pressure,
which damages concrete upon freezing and thaw-
ing. The relative importance of each mechanism
probably depends upon the cycle time. If cooling
occurs very slowly, then there is little need to drive
water quickly ahead of an advancing solid/liquid
interface, and so the hydraulic pressure will be low.
In this case, time is available for the system to ap-
proach equilibrium, if not to actually reach it. The

17

thermodynamic approach would then seem to be
the appropriate one. On the other hand, if freez-
ing occurs quickly, then time is not available for
equilibrium to be established. In this case, the hy-
draulic model is probably the more appropriate
one.

How slow is slow enough for equilibrium to
prevail is not clear. The kinetics depend upon the
transport mechanism and on the transport dis-
tance, and these points have not been established.
The general mechanism is almost certainly diffu-
sion (Helmuth 1961), as evident from the depen-
dence on time of dimensional changes in cement
pastes (Powers and Helmuth 1953, Helmuth
1961)—mass diffusion and not thermal diffusion
since thermal diffusivity is orders of magnitude
larger than mass diffusivity. Surface diffusion
along/within the thin layer of bound water on the
pore wall is a specific candidate, but whether this
dominates is unknown. Volume diffusion might
also be important. Both mechanisms are thermally
activated, presumably with different activation
energies. This difference, however, is not easily
exploited in a mechanistic search, because other
factors that affect the mass transport rate, mainly
the chemical potential gradient, are also thermally
sensitive.

Assumptions
In presenting the above analyses not all of the
assumptions were stated. Implicit are the follow-

ing.

Thermodynamic properties of pore water: The
analyses assumed that the thermodynamic prop-
erties of pore water are the same as those of bulk
water. This is probably true for the largest pores,
but not true for the smallest ones. In the latter
cases, adsorbed water, and possibly layering and
orienting of the surface molecules (Du et al. 1994,
Porter and Zinn 1993) may affect the properties
and thus the wetting angle, in ways not yet known.
That thin layers of water do not possess the same
thermodynamic properties as bulk water is evi-
dent from calorimetric and length measurements
of porous Wycor glass, for instance, where around
three monolayers of unfrozen water appear to re-
main at —40°C (Antoniou 1964). The difference is
also evident from measurements of the dynamic
elastic modulus of the same material, which indi-
cate that only a fraction of the water is frozen at
—-40°C, the remainder transforming around —-85°C
(Sellevold and Radjy 1976).

How small is small probably depends on the



size of the H2O molecule and on the number of
molecules for bulk behavior. Kern and Karplus
(1972) suggest that to a good approximation the
molecule as water may be regarded as a sphere of
radius 0.282 nm, which has embedded within it
two positive and two negative charges, located at
the vertices of a regular tetrahedron. This means
that spherical pores of 1-, 10- and 100-nm diam-
eter, for instance, contain about 5, 5000, and 5 mil-
lion molecules. If bulk behavior requires about a
million molecules, then a small pore would be less
than about 50 nm in diameter. In other words, the
thermodynamic properties of the water held
within a large fraction of the gel pores may be dif-
ferent from the bulk properties.

Pore water composition: The analysis assumed
that the pore water is a one-component system. In
fact, OH- and other ions are almost certainly
present (Wang et al. 1996), particularly with de-
icer salts. While the ions probably have little ef-
fect in suppressing the bulk freezing point, they
could lower the ice/water and ice/vapor interfa-
cial energies, thereby lessening the freezing point
depression. This would allow another explanation
of the deleterious effect of deicer salts. The ions
may also influence the transport kinetics should
they concentrate at the pore wall where surface
diffusion would operate.

Freezing sites: The analyses assumed that ex-
cept near the free surface or near internal air voids,
freezing takes place inside the material. Support
for this view comes from several sources. Feldman
(1970) studied length changes of porous Vycor
glass at temperatures from -0.5 to —-40°C upon
adsorbing and desorbing water (vapor). The be-
havior was qualitatively similar to that above 0°C
for the same material, which was well explained
both qualitatively and quantitatively in terms of
capillary condensation theory by Amberg and
Mcintosh (1952). The difference at subzero tem-
peratures was a decrease in both the adsorptive
capacity and the length change, features which
Feldman attributed to the formation of solid (i.e.,
ice/water) menisci. Similarly, from volume expan-
sion measurements, again upon cooling porous
Vycor glass, Enustun et al. (1978) concluded that
ice formed internally and not externally. Litvan
(1972 a, b), on the other hand, concluded that wa-
ter and ice never contact each other and that freez-
ing occurs externally. Litvan’s observations, how-
ever, were made with thin specimens and this
probably affected the behavior.

The ice: It was assumed that ice I, forms within
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the pores. While this is almost certainly true within
the largest pores, where the water is expected to
possess bulk thermodynamic properties, a differ-
ent variant, possibly amorphous ice, might form
within the smallest pores.

Thermal gradient: Isothermal conditions were
assumed. In practice, thermal gradients are likely.
This means that freezing probably begins near the
outer surfaces. The basic mechanisms, however,
are probably the same.

Airinbubbles: It was assumed that the air within
the air bubbles plays no role. Enustun et al. (1994),
on the other hand, suggested that its resistance to
being compressed is a factor in the hydraulic pres-
sure theory and that it biases the flow of water
toward the free surface. This may trigger ice nucle-
ation earlier than otherwise, but again probably
does not affect the basic mechanisms.

RESEARCH NEEDS

Throughout this report questions have been
raised, either explicitly or implicitly, about the
structure of concrete and its behavior under cycles
of freezing and thawing. These issues are summa-
rized as follows and may be taken as (the author’s
view of) research needs:

Role of concrete microstructure in frost resistance

1. Isthe outer product of cement hydration more
vulnerable than the inner product to ice damage?

2. Is the tensile strength of C-S-H controlled by
both the porosity of the outer product and the
degree of polymerization (the length of the sili-
cate chain)?

3. What are the true shapes, sizes and distribu-
tions of both the gel pores and the capillary pores?

4. What, if any, role does the interfacial transi-
tion zone play in ice damage to concrete?

5. What are the fundamental factors underly-
ing the critical spacing of air bubbles and its effect
in suppressing ice damage?

Analytical methods

6. To what extent can new methods of materi-
als analysis, like neutron scattering and environ-
mental scanning electron microscopy, help to im-
prove our knowledge and understanding of ice
damage?

7. Can the internal stress during freezing be
measured from the lattice parameter of one of the
crystalline phases, say CH?



Ice formation

8. Related to (5), is it the bubble spacing per se
that is important, or is it a surfactant-induced re-
duction in one or more of the surface energies (ice/
water, water/air, ice/C-S-H, water/C-S-H) that
imparts resistance to ice damage?

9. Does ice damage increase as the minimum
temperature decreases? As the holding time in-
creases?

10. How different is the ice formation process
in highly alkaline (pH = 12.5) solutions saturated
in Ca(OH), than in pure water, particularly within
fine capillary and gel pores?

11. Is the exacerbation of ice damage by deicer
salts caused by a kind of stress-corrosion-crack-
ing? By the development of an unstable ice/wa-
ter interface?

12. What form of ice, hexagonal cubic or amor-
phous, forms within the gel pores?

Improved frost resistance

13. Does ice damage decrease with increasing
pore size?

14. Does silica fume affect ice damage? If so,
how? If not, why not?

15. Will the incorporation of an appropriate dis-
tribution of fibers increase durability to freeze-
thaw damage?

Modeling

16. The nucleation and growth of ice within the
pores of concrete should be modeled. The model
should be directed at the initiation, growth, and
interaction of cracks. It should incorporate the pore
water chemistry, the important aspects of the mi-
crostructure [pore size distribution, interfacial
transition zone (?), entrained air], the degree of
saturation, the appropriate thermodynamic prop-
erties (interfacial energies, enthalpy and entropy
of both bulk and adsorbed water), and the impor-
tant physical and mechanical properties (perme-
ability, thermal expansion coefficients and conduc-
tivities, elastic moduli). The model should also
include the fracture toughness of the cement and
the complete thermal-mechanical history of the
material.
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APPENDIX A: METHODS OF MICROSTRUCTURAL ANALYSIS*

This section considers the techniques that have been used to examine the micro-
structure of concrete. Appendices B and C list further details, and note the underly-
ing principles, resolution, advantages, and disadvantages plus applications of both
imaging and indirect techniques.

MICROSTRUCTURAL ARTIFACTS

A problem common with many of the techniques used to examine the micro-
structure of concrete is that they can affect the structure. Even if the technique itself
is noninvasive, specimen preparation can affect the structure. For example, many
techniques require that the specimen be prepared by mechanically polishing to
produce either a flat surface or a thin specimen. This is particularly problematic for
concrete because the different phases polish at different rates and pullout can oc-
cur. And, as with any material, surface damage can also occur during mechanical
polishing. Another common problem is the need to dry the specimen before exami-
nation. This can severely affect the pore structure and may lead to chemical changes.
Similarly, putting a concrete or cement specimen into a vacuum, which is neces-
sary on some analytical instruments, will lead, unless the specimen is very old, to a
loss of water and a change of structure. In this regard, concrete and cement, be-
cause of their high water contents, can almost be viewed in the same light as bio-
logical materials rather than as a typical ceramic material. Even examination in air,
which at first sight may seem benign, can be a problem: carbonation of the cement
surface can occur, which can particularly be a problem when using a type of radia-
tion probe that is not very penetrating. Thus, whatever technique is used, it should
always be borne in mind that the microstructure could be altered by either the
technique itself or by specimen preparation. Thus, it is important that the micro-
structure be examined using more than one technique.

IMAGING TECHNIQUES

Imaging techniques can directly provide information on the amounts, sizes,
shapes, and distributions of phases (or pores) within their resolution range, and in
combination with other techniques may be able to both quantify the chemistry and
identify the (crystal) structure.

The highest resolution of the instruments that have been applied to concrete/
cement is a (scanning) transmission electron microscope, (S)TEM. In one of these
instruments, the change from imaging to diffraction is at the push of a button. In
combination with energy dispersive spectroscopy (EDS) electron energy loss spec-
troscopy (EELS), this type of instrument is sometimes referred to as an analytical
electron microscope (AEM). An AEM is an extremely powerful tool and probably
occupies the position as the pre-eminent analytical tool in materials science. In prin-
ciple, it can be used to determine all of the microstructural/microchemical param-
eters of a material (on a scale small). Unfortunately, this technique is fraught with
difficulties in its application to cement/concrete, the principal ones being the need
for a high vacuum (104 Pa) and the possibility of specimen damage under the
high energy electron beam. The former problem has been mitigated to some extent
by using environmental cells or differential apertures in the microscope which al-

*Prepared by |. Baker, Thayer School of Engineering, Dartmouth College.
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low the specimen to be maintained in up to 4 kPa (300 torr) of water vapor. The
latter problem can be mitigated in modern AEMs by the use of rapid beam-shifting
programs that allow only the area of interest to be exposed to the electron beam
during image collection.

The microchemistry of various phases in cement can be determined using EDS
and atomic number contrast maps can be produce (Richardson and Groves 1993).
However, this technique is usable only for elements of atomic number greater than
five and is really best suited for higher atomic number elements (lighter elements
tend to produce more Auger electrons than fluorescent x-rays under electron beam
irradiation). Surprisingly, EELS does not appear to have been used on cement/
concrete, even though it works best for detecting lighter elements. However, data
are difficult to quantify. For microchemical analysis, both EDS and EELS require
that a stationary probe be placed on the specimen for, say, 50-100 s. This can cause
severe specimen damage.

Specimen preparation is also problematic for the TEM/STEM. The usual prepa-
ration technique for nonconductors, such as cement, ion-beam thinning, is notori-
ous for causing specimen damage and in some materials, e.g., SiC, can even cause
a phase transformation.

Even if the TEM/STEM were not fraught with problems, it cannot provide the
big picture, but provides great detail of a small volume of material. This is particu-
larly a concern in a material as heterogeneous as concrete. A scanning electron mi-
croscope, SEM, has often been used to examine cement/concrete. This instrument
is extremely useful for examining fracture surfaces, because of the large depth-of-
field possible, and can be used to obtain atomic number contrast from flat polished
surfaces if backscattered electrons are used (secondary electrons give little contrast
from such surfaces unless etched). The problems associated with the nonconduct-
ing nature of the cement and the rapid drying in the vacuum inside the microscope
have been largely overcome in the last few years by the advent of the environmen-
tal scanning electron microscope, ESEM. Recent ESEMSs are easy to use and can
operate with up to ~270 Pa of water vapor in the specimen chamber. The ESEM’s
resolution is only marginally lower than that of a conventional SEM.

EDS can also be used in the SEM/ESEM to determine local chemistries and to
produce atomic number contrast maps. An EDS system on a SEM provides a pow-
erful tool for studying the microstructure of concrete, and the effects of the envi-
ronment (corrosion) and freeze-thaw effects in situ. Wavelength dispersive spec-
troscopy (WDS) does not appear to have been used to examine concrete/cement. It
has the advantage, over EDS, that lower atomic humber elements can be detected
(Z = 3) and the detection limits are lower; quantification can also be more accurate
if several spectrometers are used simultaneously.

Diffraction information is also obtainable in a SEM. Recently, the electron
backscattered pattern (EBSP) has been supplanting the selected area channeling
pattern (SACP) technique as the way to obtain both crystal structure and orienta-
tion information in the SEM, since specimen preparation is less critical and infor-
mation is readily obtainable from areas as small as 1 umz2,

Scanning acoustic microscopy, which images differences in acoustic impedance,
can provide aresolution up to 1 um (1 GHz) and image up to about ~10 mm below
the surface (100 MHz), allowing serial imaging, although not simultaneously. The
technique has the advantage that concrete can be examined in the wet condition
(water is used as the coupling medium between the lens and the specimen). How-
ever, it appears to have few advantages when compared to the ESEM for phase
identification, size and distribution determination, since the resolution is much lower
and the crystallographic (diffraction) and analytical capabilities available on the
ESEM are not possible. The only advantage appears to be the capability of serial
imaging down to about 10 mm without physically dissecting the specimen, although
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only at a resolution of ~15 um. The related techniques of scanning electron acoustic
microscopy and scanning laser acoustic microscopy appear to have little advan-
tage for the study of cement, since they do not utilize water as the coupling me-
dium. Scanning acoustic microscopy is useful for imaging cracks by observation of
the fringes produced by Rayleigh waves, and subsurface cracks less than 100 nm
can be observed. Cracks have also been studied in using a number of standard
“imaging” techniques: laser holographic interferometry, Moiré interferometry and
photoelasticity. All have some difficulties (see App. B).

The related techniques of scanning or atomic force microscopy (referred to as
either SFM or AFM), scanning capacitance microscopy (SCM), and scanning tun-
neling microscopy (STM), although having excellent (atomic level vertical) resolu-
tion, and also in the STM the capability of atomic number contrast on an atomic
level, appear not to have been applied to cement or concrete. However, they are
probably not very useful since they require the preparation of the surface on an
extremely fine scale: for atomic level resolution, the SFM needs an atomically flat
surface. STM also is probably unusable since specimens have to be conductors or
semiconductors.

Optical microscopy is a standard technique for examination of cement and con-
crete with a resolution of 1 um. Etchants can be used to study quantitatively the
distribution of anhydrous phases in clinker and cement powder. In thin sections of
hydrated pastes and concrete, the refractive properties of the different phases and
the use of fluorescent resin can indicate the cement and aggregate type, the water/
cement ratio, the presence of mineral admixtures, the quality of compaction, and
the presence of alkali silica reactions. A recent variant (laser scanning) confocal
optical microscopy could be used to study concrete/cement in the wet condition,
although this does not appear to have been tried yet.

NONIMAGING TECHNIQUES

Nonimaging techniques cannot by themselves provide a complete description
of the microstructure. In fact, a nonimaging technique requires either a (mathemati-
cal) model to relate whatever parameter is being measured to the microstructural
feature of interest, or a standard to which measurements can be related. In some
cases, the accuracy of the model limits the ability to describe the microstructure
rather than a fundamental limit in the resolution or accuracy of the technique itself.

Bulk phase identification is routinely performed by x-ray diffraction (XRD), a
standard materials technique. X-rays provide average data, rather than specific lo-
cal information. The orientation of phases (texture) can also be determined on a
scale as large as the incident beam (~1 cm2). Although a conventional x-ray set can
be used to follow phase formation during the hydration of cement, the time steps
have to be quite large (~1 hr). The use of synchrotron radiation for this purpose
would allow time steps of a few seconds to be used. This appears not to have been
done, thus far. Neutron diffraction is similar to x-ray diffraction but has the advan-
tage that neutrons are scattered much more strongly from some light atoms, e.g.,
H, than x-rays. Also, since neutrons are much more penetrating than x-rays thicker
specimens can be used. The main problem is that access to a high intensity neutron
source is necessary.

Raman spectroscopy can also be used to provide average information not only
on the phases present, but also on the local bonding. The technique has the advan-
tage over the conventional x-ray technique that the time resolution is typically 1
min. Thus, hydration can be followed over small time steps. However, the quanti-
fication of the phases present is worse than using x-rays. Nuclear magnetic reso-
nance (NMR) can also be used to study the different local environment of water
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molecules and, thus, can be used to follow hydration. Similarly, quasi-elastic neu-
tron scattering probes the major dynamic modes of motion that characterize the
state of the water molecule. The technique can be used to follow nondestructively
the hydration of cement and to determine the distribution of water among various
states, i.e., free, chemically bound or physically trapped and to investigate the for-
mation of ice in pores. It has the disadvantage that it requires access to a high inten-
sity neutron source. Even so, currently, it takes 1-2 hours to acquire a single datum
point, thus seriously limiting the time resolution. The technique does not distin-
guish between adsorbed water and water trapped in gel pores, or between free
water in capillary pores and larger pores. There are a number of specimen prepara-
tion problems with this technique (see discussion of SANS below).

An advanced form of impedance measurement, impedance spectroscopy, can
be used to follow microstructural evolution over small (< 1 min) time steps
noninvasively. Also, it provides a rapid method of determining the water/cement
ratio. However, itis difficult to interpret results in terms of microstructural changes,
and difficult to differentiate the contributions of the various factors that affect con-
duction, i.e., ion concentration, water content and pore structure. Most importantly,
the accuracy of this technique depends on the model used to relate the microstruc-
ture to the electrical impedance.

For local chemical information from surfaces, x-ray photoelectron spectrometry
(XPS), Auger electron spectroscopy (AES) or secondary ion mass spectroscopy
(SIMS) can be used. Thus far, AES appears not to have been used on cement/con-
crete. All of these techniques provide information from material within only ~1 nm
of the surface, and unfortunately all require the use of an ultra-high vacuum (UHV),
which leads to rapid drying of the specimen if it is not already dried. Specimen
imaging is possible at the same time in both AES and SIMS, using secondary elec-
trons. Sputter depth profiling is possible with all these techniques, but has the prob-
lem that not all atomic species are sputtered at the same rate. In contrast to the
other two techniques, XPS can give detailed information on the bonding or local
environment. However, SIMS has the advantage that hydrogen is detectable,
whereas it is not using the other two techniques.

Rutherford backscattering spectrometry (RBS) provides information on the lo-
cal chemistry at a depth (< 10 um) between that of x-rays and the above-mentioned
techniques. Again, as with the above three surface techniques, it has the disadvan-
tage that it must be performed in vacuum and has the additional disadvantage that
only elements for Z > 4 are detectable. Thus far, this technique appears not to have
been applied to the study of cement or concrete, and there appears to be little ad-
vantage in doing so.

The nanoindenter can provide information on mechanical properties on a very
fine scale. The technique does not appear to have been applied to cement/concrete,
but could provide information on a scale to which the surface can be mechanically
polished, say 1 um, allowing information to be obtained from individual phases in
situ.

PORE EXAMINATION

Within porous materials in general pore sizes range over six to seven orders of
magnitude (Smith et al. 1994), from fractions of a nanometer to several hundred
microns. Thus, to examine pores, no single technique is entirely satisfactory and
the values for the pore parameters can vary depending on the techniques used to
measure them. For example, nitrogen absorption can measure pore sizes in the
range 0.35 nm to 70 nm, whereas mercury intrusion porosimetry (MIP) is usable
for pore sizes 3.5 nm to 200 nm. A problem with many techniques described in this
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section, when applied to cement, is that the cement has to be dried, typically through
heating, and this can change the pore structure, as already noted. However, solvent
replacement, using methanol to replace the water, appears to preserve the original
pore structure. Using this technique, the pore volumes obtained by a combination
of nitrogen absorption (up to 4 nm), and MIP (for larger pores) produced excellent
agreement between measured and calculated densities of cement (Hansen and
Almudaiheem 1987).

There are numerous techniques for examining pores, as already noted. Perhaps,
the most obvious techniques for the examination of both pore size and pore distri-
bution are optical microscopy and scanning electron microscopy. However, these
techniques are limited both by resolution (1 um for optical microscopy; 0.1 um for
backscattered electrons on a scanning electron microscope) and by polishing that
may damage or plug pores on the examined surface.

Ignition is a standard technique used to determine the evaporable water and,
hence, the porosity. The technique assumes that all the evaporable water is removed
before ignition. Permeability can be used to determine the porosity. Both total po-
rosity and its distribution determine the permeability, but only pores greater than a
specific value contribute to the permeability. The most common technique is mea-
surement of the amount of water that can be forced into the specimen under pres-
sure. There are a number of problems with this techniques. For example, for imper-
meable specimens, small specimens have to be used, which can lead to problems
with lack of representativeness. Since the solubilities of phases vary with local hy-
drostatic pressure, pressure gradients through the specimen can lead to phase re-
distribution, which affects the pore structure and permeability. Permeability meth-
ods tend to give lower surface areas than absorption methods, see below, because
of blocked channels that are not accessible to moving air/fluid streams.

There are a number of “standard” techniques for determining the pore size dis-
tribution and, even though they have often been used, many have problems. MIP
was for many years the primary method for investigating pore-size distribution
(total porosity, capillary porosity, and gel porosity) of hardened cement paste al-
though it provides no information on the spatial distribution of the pores. As noted
earlier, it is best used for pores in the range 3.5 nm to 200 um (it is unusable for pore
diameters < 2 nm), and provides the same results as helium pyncometry for plain
dried pastes but in blended pastes MIP gives higher porosities (Marsh and Day
1985). There are a number of other problems with the technique, in addition to
those noted above, including specimen damage from both the predrying and the
high pressures involved; uncertainty in the contact angle and surface tension; and
the network/percolation “ink-bottle” effects. The microstructure can be altered
during mercury intrusion.

Another standard technique is gas (typically, nitrogen) adsorption. It can be used
to measure both external surface area and is well established for mesoporous sol-
ids with pore diameters in the range 2-50 nm (for microporous solids where the
pore diameter is less than 2 nm there is some uncertainty in interpreting data). As
for MIP, no information on the spatial distribution of the pores is obtained and the
structure can, again, be altered during (gas) intrusion. Finally, it is worth noting
that the internal areas determined by gas adsorption are dominated by gel poros-
ity, which has only a minor effect on bulk transport. Two related techniques are
methanol adsorption and water adsorption. Both have similar problems to nitro-
gen adsorption and may give different values for the pore size distribution due to
the differences in the polarity and size of the molecules. Again a fundamental flaw
with the techniques is that large pores with small openings will be intruded at
pressures corresponding to the entrance of the pore, resulting in a skewing of pore
sizes.

The related techniques of small angle neutron scattering (SANS) and small angle
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x-ray scattering (SAXS) are both useful for characterizing the gel pore surface and
fractal dimensions. They have the advantage, compared to many of the above tech-
nigques, that they do not require drying of the specimen and are noninvasive, al-
lowing the same specimen to be examined many times. SANS is probably the more
useful of the two techniques since neutron absorption is much less than x-ray ab-
sorption, allowing the use of thicker specimens. Even so, specimens must be less
than 1 mm thick to avoid multiple scattering. Again, such specimens are difficult to
prepare from concrete. Also, carbonation of the surface can occur if care is not taken.
Probably the main disadvantage with these techniques is that they are not easily
accessible, requiring specialized x-ray or neutron sources.

NMR has also been applied to the determination of pore size distribution in
some materials. However, it is not clear that appropriate mathematical models have
been developed sufficiently in order to relate the measurements to pore sizes.

Two novel techniques for examining pore size distributions are low-tempera-
ture calorimetry (calorimetry is a standard technique for determining the course of
hydration of cement via the heat output) and elastic modulus measurements. Us-
ing low temperature calorimetry, the heat change (which indicates the amount of
water) and the temperature at which the change occurs (which indicates the water-
filled pore diameter—the smaller the pore the lower the freezing temperature) can
be measured during cooling. The technique avoids specimen predrying and can be
used several times on the same specimen. It is best for larger pores. The elastic
modulus method also requires cooling the cement/concrete specimen. By using
mathematical models, knowing the elastic modulus of the components of the ce-
ment and determining the elastic modulus at a given temperature, the volume frac-
tions of the components (ice/water) can be determined. Again the technique uses
the fact that water freezes in small pores at a lower temperature than in large pores.
Thus, to determine the pore size distribution, the elastic modulus is determined at
different temperatures. In addition, ice damage can also be followed directly. There
are two disadvantages with this technique: dynamic elastic modulus measurements
are performed in vacuum, leading to water sublimation, and the validity of the
results depends on the accuracy of the mathematical models.
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APPENDIX D: DERIVATIONS

These derivations are based on a simple application of thermodynamics. They
ignore changes in surface energies with temperature, and do not consider the re-
duction in the entropy of water as the pore liquid becomes dominated by the “struc-
tured” water at the gel surface.

Freezing point suppression (eq 6)
Assume that only the liquid phase is under tension. At equilibrium:

M1 =Hs (D1)
or
H; ~ TS| -~ V{AP = Hg ~ TS, (D2)

where U is the chemical potential, and H, S and V are molar enthalpy, molar en-
tropy and molar volume, respectively. T is absolute temperature and the subscripts
I and s denote liquid and solid, respectively. Assuming that H is relatively inde-
pendent of temperature near T, = 273 K and writing

Hy =Hg+L (D3)

where L is the molar heat of fusion, and writing
L

&=%+ﬁ- (D4)

then for equations D2, D3, and D4 and eq 5 (text):

l _ 1-2V)y,, cos@
To rL (DS)
or
2TV,
AT=T _TO = 0 |y|V COS(‘p (D6)

rL

where T is the equilibrium freezing point of water within a pore of radius r and AT
is the freezing point suppression.

Pressure melting temperature, T, (eq 8)
Assume that only the solid phase is under compression. At equilibrium,

Mi = Mg (b1
or

H) -TpS) = Hg = TpSs + VAR, (D7)
Again, letH, =Hg +Land letS; =Sg+L/T, . Then

V(OP,
L

=1

S

or
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0 VebP,O
To=Tof=—H (D8)
Writing
_ 1
AF’p - 2Vsl %_ EQ (D9)

Then

N, 1
Tp=To ﬁ- —SLVS' % - E% (D10)

For R >>r, then

2Veyg O
To=To E‘_E—LSIH (D11)

similar to eq D6.
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